If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+20w+16=0
a = 6; b = 20; c = +16;
Δ = b2-4ac
Δ = 202-4·6·16
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4}{2*6}=\frac{-24}{12} =-2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4}{2*6}=\frac{-16}{12} =-1+1/3 $
| 115=12x+5 | | (4x-9)^2=0 | | -4+2g=-10-g | | -16y+50=0 | | 19+8y=3 | | -1+6r=-10+5r | | 5x-12-5x=20 | | 3*9^(x-1)=27^(x) | | 13x17=180 | | z(3)/(4)-z(1)/(2)-4=12 | | 15n-6-7n=34 | | d+13=13 | | (2w-3)*W=27 | | (16x=22)=134 | | 4n+7+3n=21 | | 2p=-8-2p | | -8-8q=-9q | | -2x+4x=3x | | (7x=1) | | 5(x+11)=20 | | 3x+4+7x=-5(x+6)+4 | | y/3-7=16 | | 5+5w=4w | | 3x+17+8x+9=180 | | 4d=-10+5d | | -2x=5(x+12)+17 | | 7q-5=12q+30 | | 12m-16=80 | | -⅔+y=8-⅔ | | 2.2y=66 | | 3x+7=-2(4-3x) | | 3(x+4)=x=14 |